
Cheat	Sheet:	factorial	ANOVA	
Measurement	and	Evaluation	of	HCC	Systems	

	

Scenario	
Use	factorial	ANOVA	if	you	want	to	test	the	effect	of	two	(or	more)	nominal	variables	varX1	
and	varX2	on	a	continuous	outcome	variable	varY.	In	this	scenario	varX1	and	varX2	are	
usually	orthogonally	manipulated	experimental	manipulation	with	two	or	more	conditions	(but	
they	can	be	any	nominal	variable,	such	as	gender,	race,	occupation,	etc).	Each	participant	is	
randomly	assigned	to	one	condition. 

Power	analysis	
- To	do	a	power	analysis	for	the	omnibus	test,	use	Test	family	“F	tests”,	“ANOVA:	Fixed	effects,	

special,	main	effects	and	interactions”.	
- A	power	analysis	has	four	variables:	Effect	size,	α	(usually	.05),	power	(usually	.85),	and	N.	If	

you	know	three	of	these,	G*Power	will	calculate	the	fourth.	Select	the	correct	type	of	power	
analysis,	based	on	the	information	you	have,	and	what	you	want	to	find	out.	

- “Numerator	df”	is	the	number	of	levels	you	are	comparing	minus	1.	For	the	main	effect	of	an	
X	variable	with	k	levels,	this	is	k–1;	for	an	interaction	effect	of	two	X	variables	with	k	and	r	
levels,	this	is	(k–1)(r–1).	

- “Number	of	groups”	is	the	total	number	of	experimental	conditions;	e.g.	for	the	
aforementioned	two	X	variables	it	is	k*r.	

- By	clicking	on	“Determine”,	you	can	compute	the	effect	size	f	from	the	partial	η2.	
- Click	on	“Calculate”	to	calculate	the	missing	parameter.	
- To	conduct	power	analyses	for	contrasts	or	post	hoc	tests,	refer	to	power	analysis	of	the	

independent	t	test.	Use	a	corrected	α	if	needed.	

Plotting	a	line	plot	and	a	box	plot	
- Use	the	ggplot2	package	to	plot	a	bar	chart	with	error	bars.	

ggplot(data, aes(varX1, varY, color=varX2)) + stat_summary(fun.y=mean, 
geom=”line”, aes(group = varX2) + stat_summary(fun.data=mean_cl_normal, 
geom=”errorbar”, width=0.2)	

- Plot	a	boxplot:	
ggplot(data, aes(varX1, varY)) + geom_boxplot() + facet_wrap(~varX2)		



Pre-testing	assumptions	
- In	an	ANOVA,	Y	should	be	independent,	continuous,	and	unbounded.	The	error	variance	

should	be	normally	distributed,	which	is	true	if	Y	is	normally	distributed	for	each	level	of	X.	
The	ANOVA	test	is	fairly	robust	against	violations	of	normality.	Variances	are	assumed	to	be	
equal	across	groups	(homoscedasticity).	

- If	your	N	is	small:		
o Test	for	significant	skewness,	kurtosis,	and	Shapiro-Wilk	test	within	each	group	using	

stat.desc	in	the	pastecs	package	and	the	by	function.	
by(data$varY, list(data$varX1, data$varX2), stat.desc, basic=F, norm=T)	

o Multiply	skew.2SE	and	kurt.2SE	by	2	to	get	the	Z-scores	of	skewness	and	kurtosis.	
Compare	these	values	to	typical	cut-off	values	(Z	>	±1.96:	p	<	.05,	Z	>	±2.58:	p	<	.01,	Z	>	
±3.29:	p	<	.001).	The	significance	of	the	Shapiro-Wilk	test	is	listed	under	normtest.p.	

o Test	the	assumption	of	homoscedasticity,	conduct	Levene’s	test	in	the	car	package.	
leveneTest(varY ~ varX1*varX2, data=data, center=median)	

o A	significant	Levene’s	test	means	that	the	data	is	heteroscedastic.	In	this	case,	Welch’s	
ANOVA	should	be	used	instead	of	a	regular	ANOVA.	

- If	your	N	is	large:		
o Subset	the	data	into	multiple	groups	based	on	varX1	and	varX1.	

ADdata <- subset(data, data$varX1 == “A” & data$varX2 == “D”) 
AEdata <- subset(data, data$varX1 == “A” & data$varX2 == “E”) 
etc…	

o Draw	the	histogram	for	varY	in	ADdata,	overlaid	with	a	normal	curve	(using	ggplot2),	
and	visually	inspect	whether	it	follows	the	normal	distribution:	
ggplot(ADdata, aes(varY)) + geom_histogram(aes(y=..density..), 
binwidth=1, color="black", fill="white") + stat_function(fun = dnorm, 
args = list(mean = mean(ADdata$varY), sd = sd(ADdata$varY)))	

o Change	the	binwidth	setting	based	on	what	is	suitable	for	your	data.	
o Draw	normal	a	Q-Q	plot,	and	visually	inspect	whether	the	data	follows	the	diagonal	line:	

qplot(sample = ADdata$varY, stat=”qq”)	
o Do	the	same	for	AEdata,	etc.	
o Visually	inspect	the	boxplot	to	assess	the	level	of	heteroscedasticity.	You	can	also	use	the	

variance	ratio	test	(Hartley’s	Fmax).	This	is	the	ratio	of	the	variances	between	the	group	
with	the	biggest	variance	and	the	group	with	the	smallest	variance.	
max(by(data$varY, list(data$varX1, data$varX2), var)) / 
min(by(temp$varY, list(data$varX1, data$varX2), var))	

o Compare	this	value	against	Figure	5.8	in	the	book.	
- If	your	data	has	positive	skew,	and	your	data	only	has	positive	values,	you	can	possibly	fix	

this	by	transforming	your	Y	variable:	



o Log	transform:	
data$varYlog <- log(data$varY + 1)	

o Or,	square	root	transform:	
data$varYsqrt <- sqrt(data$varY)	

- In	other	cases	of	violations	of	assumptions	(e.g.	outliers),	you	can	conduct	a	robust	test	(see	
below).	

(optional)	Preparing	contrasts	
- If	you	have	specific	hypotheses	about	where	the	differences	between	conditions	exist,	you	

can	run	tests	as	planned	contrasts.	
- See	the	cheat	sheet	for	ANOVA	on	how	to	prepare	contrast	for	each	of	your	X	variables.	

Running	the	test	
- Run	the	factorial	ANOVA	as	follows:	

model1 <- aov(varY ~ varX1 * varX2, data = data)	
- Get	the	model	summary	using	Type	III	sum	of	squares	(if	you	expect	an	interaction	effect;	

requires	orthogonal	contrasts)	or	Type	II	sum	of	squares	(if	you	expect	no	interaction	effect):	
Anova(model1, type=3)	

- The	output	gives	the	F-statistic	and	its	p-value	for	the	main	effects	and	the	interaction	
effect(s).	A	significant	interaction	effect	means	that	the	effect	of	varX1	is	different	at	
different	levels	of	varX2,	and	vice	versa.	The	effects	of	lower-level	effects	are	not	
interpretable	if	the	(higher-level)	interaction	effect	is	significant.	

- You	can	get	the	effect	sizes	omega-squared	using	the	omega_aov	function	I	created:	
omega_aov(model1)	

(optional)	Robust	versions	
- You	can	use	functions	in	the	WRS2	package	to	run	trimmed	and/or	bootstrapped	ANOVAs.	
- Robust	two-way	ANOVA	using	10%	trimmed	means	(change	the	percentage	if	desired):	

t2way(varY ~ varX1 * varX2, data = data, tr = 0.1)	
- Robust	two-way	ANOVA	using	M-measures	on	a	bootstrapped	median	(may	use	“mom”	

instead	of	“median”):	
pbad2way(varY ~ varX1 * varX2, data = data, est=”median”, nboot = 2000)	

	(optional)	Evaluate	contrasts	
- Evaluate	your	planned	contrasts	using	the	summary.lm	function.	

summary.lm(model1)	
- In	terms	of	overall	model	fit,	this	output	will	give	you	the	R-squared,	which	is	the	proportion	

of	the	variance	of	varY	explained	by	the	model.	In	ANOVA	this	value	is	called	eta-squared.	



- Lower-level	effects	are	not	interpretable	if	the	(higher-level)	interaction	effect	is	significant.	
If	the	interaction	effect	is	not	significant,	then	the	main	effects	are	the	effects	of	an	X	on	Y,	
given	the	other	X(s).	

- Interaction	effects	between	two	contrasts	represent	the	difference	in	the	effect	of	one	
contrast	at	different	levels	of	the	other	contrast	(and	vice	versa).	Refer	to	the	ANOVA	cheat	
sheet	on	how	to	interpret	the	main	effect	contrast	coefficients.	

- Each	coefficient	has	a	t	test	and	a	p-value	to	test	if	the	effect	is	significant.	Multiply	the	p-
value	by	2	if	you	were	conducting	a	one-sided	test	(this	is	very	likely	for	planned	contrasts!).	
You	can	get	the	effect	size	r	using	the	formula	r	=	√(t2	/	t2	+	df)).	

- You	can	get	confidence	intervals	for	the	coefficients	using	the	confint	function:	
confint(model1)	

- (optional)	see	the	ANOVA	cheat	sheet	for	how	to	correct	your	critical	p-value	in	case	you	
used	non-orthogonal	contrasts.	

(optional)	Simple	effects	
- You	can	test	the	effect	of	varX2	(levels:	D	and	E)	at	each	level	of	varX1	(levels:	A,	B,	and	C)	

with	a	simple	effects	test.	
- First	create	an	interaction	variable:	

data$simple <- interaction(data$X1,data$X2)	
- Then	create	dummies	for	the	contrasts:	

AvBC <- c(-2/3, 1/3, 1/3, -2/3, 1/3, 1/3) 
BvC <- c(0, -1/2, 1/2, 0, -1/2, 1/2) 
X2_A <- (-1/2, 0, 0, 0, 1/2, 0, 0) 
X2_B <- (0, -1/2, 0, 0, 0, 1/2, 0) 
X2_C <- (0, 0, -1/2, 0, 0, 0, 1/2) 
contrasts(data$simple) <- cbind(AvBC, BvC, X2_A, X2_B, X2_C) 
simpleModel <- aov(varY ~ simple, data=data) 
summary.lm(simpleModel) 
confint(simpleModel)	

(optional)	Post-hoc	tests	
- You	can	only	do	post-hoc	tests	and	robust	post-hoc	tests	on	the	main	effects.	These	are	the	

same	as	for	ANOVA	(see	the	ANOVA	cheat	sheet).	

(optional)	Effect	sizes	of	specific	differences	
- Get	means,	sds,	and	ns	from	stat.desc	in	the	pastecs	package.	

desc <- by(data$varY, list(data$varX1, data$varX2), stat.desc)	
- Plug	the	values	into	mes,	e.g.	to	test	the	differences	between	conditions	D	and	E	in	group	A:	

mes(desc$[[“A”,”D”]][“mean”], desc$[[“A”,”E”]][“mean”], 



desc$[[“A”,”D”]][“std.dev”], desc$[[“A”,”E”]][“std.dev”], 
desc$[[“A”,”D”]][“nbr.val”], desc$[[“A”,”E”]][“nbr.val”])	

- It	is	common	to	report	d	instead	of	r.	

Reporting	
- Use	the	following	format	to	report	on	an	ANOVA	(replace	the	full	names	(not	just	the	

variable	names)	of	A,	B	and	varY,	and	replace	the	xx’es	with	the	actual	numbers).	
- For	the	main	effect	tests:	“There	was	a	significant	effect	of	[varX1]	on	[varY],	F(x,	x)	=	x.xx,	

p	=	.xxx,	ω2	=	.xx.”	
- For	the	interaction	effect	and	simple	effects:	“There	was	a	significant	interaction	effect	

between	[varX1]	and	[varX2]	on	[varY],	F(x,	x)	=	x.xx,	p	=	.xxx,	ω2	=	.xx.	Specifically,	there	was	
a	significant	difference	between	[D]	(M	=	xx.xx,	SD	=	xx.xx)	and	[E]	(M	=	xx.xx,	SD	=	xx.xx)	in	
condition	[A],	d	=	x.xx;	between	[D]	(M	=	xx.xx,	SD	=	xx.xx)	and	[E]	(M	=	xx.xx,	SD	=	xx.xx)	in	
condition	[B],	d	=	x.xx;	and	between	[D]	(M	=	xx.xx,	SD	=	xx.xx)	and	[E]	(M	=	xx.xx,	SD	=	xx.xx)	
in	condition	[C],	d	=	x.xx;.	

- For	reporting	contrasts	and	post-hoc	tests,	see	the	ANOVA	cheat	sheet.	


